
Positive Higher-Order Queries

Michael Benedikt
Oxford University

Computing Laboratory
Parks Road, Oxford, UK

michael.benedikt@comlab.ox.ac.uk

Gabriele Puppis
Oxford University

Computing Laboratory
Parks Road, Oxford, UK

gabriele.puppis@comlab.ox.ac.uk

Huy Vu
Oxford University

Computing Laboratory
Parks Road, Oxford, UK
huy.vu@comlab.ox.ac.uk

ABSTRACT
We investigate a higher-order query language that em-
beds operators of the positive relational algebra within the
simply-typed λ-calculus. Our language allows one to suc-
cinctly define ordinary positive relational algebra queries
(conjunctive queries and unions of conjunctive queries) and,
in addition, second-order query functionals, which allow the
transformation of CQs and UCQs in a generic (i.e., syntax-
independent) way. We investigate the equivalence and con-
tainment problems for this calculus, which subsumes tradi-
tional CQ/UCQ containment. Query functionals are said
to be equivalent if the output queries are equivalent, for
each possible input query, and similarly for containment.
These notions of containment and equivalence depend on
the class of (ordinary relational algebra) queries considered.
We show that containment and equivalence are decidable
when query variables are restricted to positive relational al-
gebra and we identify the precise complexity of the problem.
We also identify classes of functionals where containment is
tractable. Finally, we provide upper bounds to the complex-
ity of the containment problem when functionals act over
other classes.

Categories and Subject Descriptors
H.2.3 [Database Management]: Logical Design, Lan-
guages—data models, query languages; F.2.0 [Analysis of
Algorithms and Problem Complexity]: General

General Terms
Theory

Keywords
complexity, algorithms

1. INTRODUCTION
Query transformation is a basic operation in database sys-

tems. In processing queries over views, query rewriting is a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0033-9/10/06 ...$10.00.

fundamental tool – queries over the view are rewritten to
queries over base data. In query relaxation [21, 3] queries
are rewritten to get a larger class of results. Another topic
of recent interest is query specification [24, 35, 11], which can
be seen as boolean querying of queries. Query specification
is an approach to specify permitted queries to secure access
to web datasources.

The importance of query transformation makes it natu-
ral for us to consider a query language for querying queries.
In this work, we will examine higher-order query language,
based on terms that feature both variables ranging over
queries and variables ranging over relations. Terms are built
up via the normal relational algebra operations, plus a new
operation application of a query variable to an expression.
Higher-order terms can be considered in two ways: as func-
tions of the first-order and second-order variables together,
or (via currying the second-order variables) as mappings
from queries to queries.

Example 1. We consider transformations that trans-
form input queries P,Q, where both P and Q take as
input relations R with integer-valued attributes a and b
and return relations with the same schema. One such
transformation takes P and Q and returns the query
σa=5(P ∩ Q). This would be expressible in our language
as λP. λQ. λR. σa=5

`
P (R) 1 Q(R)

´
. Another such trans-

formation takes P and Q and returns the query σa=5 ◦
Q ◦ P . This would be expressible in our language as
λP. λQ. λR. σa=5

`
Q(P (R)

´
.

In the above examples, P and Q are query variables while
R is a first-order variable – R ranges over finite databases
for a schema with attributes {a, b}, while P and Q range
over mappings between such databases.

We look for languages with two important properties. The
first is that the transformations defined in our languages, as
in the examples above, are generic – the output of a term
when the higher-order variables are bound to queries de-
pends only on the semantics of the queries. This is in con-
trast to query transformation and specification languages
which allow direct access to the syntax of the queries [26,
35]. Secondly, we search for languages where static analy-
sis and optimization are possible, extending techniques from
the case of standard selection project join queries in the re-
lational case. This is again in contrast to prior languages for
querying queries (e.g. [26]), which are relationally complete,
and hence cannot admit static guarantees even of satisfia-
bility.

This second goal impacts our calculus in two ways: it in-
fluences what mappings the query variables P and Q range

over, and also what relational algebra operators are per-
mitted in addition to application. We will look at higher-
order languages where queries range over a tame fragment
of relational algebra. We thus focus on queries in higher-
order languages that generalize positive relational algebra,
rather than full relational algebra. The restriction to posi-
tive queries will hold both for constants used to build terms
and for query variables. We will define several variants of
positive higher-order query languages and investigate the
containment problem for them. We will show that many
important containment and equivalence problems are decid-
able in the case of queries ranging over positive relational
algebra. We will also look at the containment problem for
the ordinary data-to-data queries built up in this language.

Our contributions can be summarized as follows:
1. We define a higher-order query language for which sev-

eral basic analysis problems are decidable (Section 2),
along with a particularly simple expressively equiva-
lent subset of the language – the normal-form queries.

2. We isolate the complexity of the containment and
equivalence problems for higher-order queries in
normal-form that manipulate positive relational alge-
bra queries, and also give results in the presence of
dependencies (Section 3).

3. We give upper bounds to the complexity of the con-
tainment and equivalence problems for normal-form
higher-order queries over other bases (Section 4).

4. We give preliminary results related to terms (higher-
order and lower-order) that are not in normal form
(Section 5).

Due to space limitations, proofs are either sketched or de-
ferred for the full version.

2. DEFINITIONS

2.1 Types
We fix an infinite set of attribute names (or attributes).

We define the relational types as the (possibly empty) tuples
of attribute names, T = (a1, ..., am), for any m ∈ N (the
type corresponding to the empty tuple is denoted ε). We
manipulate relational types by using the standard operations
on tuples, such as the juxtaposition (without duplicates) T +
T ′ and the projection πA(T), for a given set A of attributes
in T .

Relational types are the basic building blocks of more
complex types. We define higher-order types, hereafter
called query types, by using the functional type construc-
tor: if T , T ′ are (relational or query) types, then T → T ′ is
a query type. As usual, we assume that the functional type
constructor is right-associative and we view any query type
of the form T1 → ... → Tm → T ′ as the curried form of the
functional type (T1 × ...× Tm)→ T ′,

We define the order of a type T , denoted order(T), as
follows: we let order(R) = 0 for any relational type R and
order(T → T ′) = max

`
order(T) + 1, order(T ′)

´
for any

query type T → T ′.

We associate with each attribute name ai a rangeDom(ai)
of possible values, called the attribute range of ai. Exam-
ples of attribute ranges are the integers Z and the booleans
B. We assume that there are infinitely many attribute
names associated with each attribute range. The elements

in each attribute range Dom(ai) are called attribute val-
ues. Similarly, given a relational type R = (a1, ..., am),
we denote by Dom(R) the set Dom(a1) × ... × Dom(am),
whose elements are called records. Given a record t ∈
Dom(a1) × ... × Dom(am), we denote by t.ai the value of
the attribute ai in t.

The instances of a relational typeR, which are called rela-
tions, are the finite sets R consisting of some records chosen
from Dom(R) (note that there are only two relations of type
ε, namely, the empty set, usually identified with the boolean
value false, and the singleton {ε}, usually identified with
the boolean value true). In a similar way, the instances of a
query type T → T ′, called queries, are the functions Q that
maps objects x of type T to objects of type T ′. We will be
mainly concerned with types of order at most 2 in this work.
An an example, queries of order 1 map tuples of relations to
relations, while queries of order 2 map tuples of queries to
queries.

2.2 Terms and their semantics
We now define our variant of the simply-typed λ-calculus

for the setting where we can abstract either over relations
or queries.

First of all, we fix a signature F , namely, a set of relational
constants and query constants together with the associated
arities. We use RA+ to denote the signature for Positive
Relational Algebra, which contains the following constants:
(i) all finite relations R, viewed as constants of order 0 – we
often abuse notation by identifying each constant symbol
with its interpretation; (ii) the unary rename operator ρa/b,
which renames the attribute a by b in a given input relation;
(iii) the unary operator πA, which projects an input relation
into the subset A of its attributes; (iv) the unary operator
σc, which selects a subset of the tuples from a given relation
according to the condition c envisaging equalities between
attributes/constants; (v) the binary operator 1, which re-
turns the cartesian product of two input relations followed
by a selection of the tuples that have the same values on
the same attribute names; (vi) the binary operator ∪, which
returns the union of two input relations of the same type.
Another signature of particular interest is that of Conjunc-
tive Queries, denoted CQ, which consists of the four families
of operators ρa/b, πA, σc, and 1 of the Relational Algebra,
and of Conjunctive Queries with Relational Constants CQC,
which adds to CQ all relational instances as constants. Fi-
nally RA extends RA+ with the usual difference operator \.
We sometimes use the infix notation for the constants of
arity 2 (for instance, for the operators 1 and ∪).

We also fix an infinite set X of relational and query vari-
ables. Sometimes, we may omit the type of a variable when
it is clear from the context (for instance, we will usually
denote relational variables by R,R′, ... and order 1 query
variables by Q,Q′, ...).

Higher-order terms are build up from constants in F and
variables in X by using the operations of abstraction and
application: if X is a variable of type T and ϕ is a term of
type T ′, then λX.ϕ is a term of type T → T ′; similarly,
if Φ is a term of type T → T ′ and ϕ is a term of type T ,
then Φ(ϕ) is a term of type T ′. We say that a term Φ is
closed if it contains no free occurrences of variables. The
operation Φ1 ◦Φ2 of functional composition is often used as
a shorthand for λX.Φ1(Φ2(X)), provided that the resulting
term is well-typed.

Given a term Φ, we define the order of Φ as the order
of its type and the degree of Φ as the maximum order of
its subterms. As an example,

`
λQ. λR.Q(R)

´
(πA) is a term

of order 1 and degree 2. We also define the size of a term
inductively as follows. The size of a relational constant is
the size of the corresponding instance, namely, the number
of attributes times number of rows. The size of a query
constant is its length. The size of a first-order or a second-
order variable is 1. The size of a higher-order term is defined
as 1 plus the sum of the sizes of its top-level sub-terms.

As for the semantics of terms, the obvious evaluation
method is to pair the standard operational semantics of the
λ-calculus with an interpretation for the relational constants
and the query constants. Below, we define such a semantics
by exploiting an induction on the order of terms.

In order to do that, we need to first fix an interpretation
for the constants and the variable domains. Formally, an
interpretation I for the signature F is a function that maps
(i) every constant const ∈ F to its semantics JconstKI (e.g.,
J∪KI is usually the function that maps a pair of relations R1

and R2 to their union R1 ∪ R2) and (ii) every variable X ∈ X
to its domain DomI(X) (e.g., if X is an order 1 query vari-
able, then DomI(X) can be the set of all queries of the
Positive Relational Algebra). Below, we make the underly-
ing interpretation I explicit by denoting the semantics of a
term Φ by JΦKI .

For every term Φ of the form const(ϕ1, ..., ϕk), where
k ∈ N is the arity of the constant const ∈ F , we de-
note by JΦKI the relation JconstKI

`
Jϕ1KI , ..., Jϕ1KI

´
. Sim-

ilarly, given a term Φ of the form λX.ϕ(X), we denote by
JΦKI the function that maps every object x in DomI(X) to
the object JϕKI[X/x], where I[X/x] is the interpretation for

the extended signature F ∪ {x} obtained from I by letting
JxKI[X/x] = x be the interpretation for the new constant x.

Finally, given a term Φ of the form ϕ1(ϕ2), we denote by
JΦKI the object Jϕ1KI

`
Jϕ2KI

´
.

From now on, for a fixed signature F (e.g., F = RA+), we
tacitly assume the standard interpretation for the constants
in F and the standard interpretation for the domains of the
relational variables, which are the sets of finite relations of
appropriate types. We now explain how the ordinary rela-
tional calculus embeds in our language. A term is simple if
it contains no second-order variables and no λ-abstractions:
thus, a simple term is formed by just using the constants
of the signature. We identify a simple term with the query
obtained by abstracting all of its relational variables and
adding a fresh abstracted variable if there are none free.
Under this convention RA terms correspond to Relational
Algebra queries in the usual sense, RA+ terms correspond
to Positive Relational Algebra queries, and CQ terms corre-
spond to select-project-join queries [1]. The signature CQC

extends CQ with the set of all relational constants. We will
freely use RA, RA+, CQC, and CQ to refer to both the simple
terms and the associated queries.

In contrast to the case of relation variables, we let the
domains for query variables be unspecified a priori, and we
use an auxiliary argument to completely describe their se-
mantics. We shall denote by λRA+ (resp., λCQC, λRA) the
interpretation for F that associates with any order 1 variable
Q the set of all queries of the Positive Relational Algebra
(resp., the set of all Conjunctive Queries with Relational
Constants, the set of all Relational Algebra queries). We

will sometimes refer to the range of variables as the base.
As an example, if Φ = λQ. λR.Q(R), then JΦKλRA+ denotes
the function that maps a query Q of the Positive Relational
Algebra and a finite relation R to the finite relation Q(R).
Moreover, if the interpretation I is clear from the context,
we can omit the subscript I from JΦKI . By a slight abuse
of notation, we can also write const in place of JconstK
for the standard interpretation of the constant const in the
signature F .

2.3 Normal forms
We recall the notions of β-reduction, η-expansion, and η-

long β-normal form. We identify terms up to α-congruence,
that is, we identify any two terms of the form λX.ϕ and
λY. ϕ[X/Y], where ϕ[X/Y] denotes the substitution of every
free occurrence of the variable X in ϕ by a fresh variable Y .
We call β-reduction the application, in any given context,
of the following rewriting rule (renaming of bound variables
may be necessary in order to avoid variable capture):

(λX.Φ)(ϕ) ; Φ[X/ϕ].

The lefthandside term above is called a redex. A term is said
to be in β-normal form if it contains no redex (and hence
no β-reduction can be applied to it).

Another useful transformation is that of η-expansion,
which transforms a subterm Φ of functional type T → T ′ to
the subterm λX.Φ(X), where X is a fresh variable of type
T . In order to guarantee termination, the operation of η-
expansion is restricted to the subterms Φ that do not start
with the abstraction operator λ and that have no explicit ar-
gument in their context (e.g., η-expansion is never applied
to the subterms Φ when they occur in a context like Φ(ϕ)).
A term is said to be in η-long β-normal form (hereafter,
simply normal form) if no β-reduction nor η-expansion (as
restricted before) is possible.

Since the operations of β-reduction and η-expansion are
confluent and always terminating (on well-typed terms), we
have that every term Φ has a unique normal form, denoted
Φ↓. Moreover, the normal form of a term can be obtained
by first applying all β-reductions and then all η-expansions.
This also shows that the normal form of any term Φ of order
2 can be written as follows:

Φ↓ = λQ1...λQm. λR1...λRn. ϕ

where Q1, ..., Qm are order 1 query variables, R1, ..., Rn are
relational variables, and ϕ is a term of order 0 with free
variables among Q1, ..., Qm, R1, ..., Rn, but with no occur-
rence of λ-abstraction. In particular if Φ is a closed term
of relational type, then the normal form is just a term of
relational type built up from constants, which can then be
evaluated, using the semantics of the constants to get a rela-
tion. Thus we have a (näıve but) effective way of evaluating
closed terms.

2.4 The term hierarchy
We introduce some notation that will be extensively used

through the rest of the paper.

Definition 1. Let F be a generic signature and let m,n
be two natural numbers such that m ≤ n. We denote by

• Termsm,n[F] the class of all closed terms of order m
and degree n that are built up from constants in the
signature F using abstraction and application,

• Terms↓m[F] the subclass of Termsm,n[F] consisting only
of terms in normal form (note that the degree and the
order coincide for terms in normal form).

As an example, Terms0,1[RA+] (resp., Terms0,1[CQ]) is the
class of all closed terms of relational type (e.g., Φ = (λR.R 1

ρa/b(R)){t0, t1}) that are built up from the operators of the
Positive Relational Algebra (resp., from the operators ρa/b,
πA, σc, and 1) via application and abstraction over variables
of degree at most 1. Note that normal forms of terms of order
1 are the same as simple terms; hence the class Terms↓1[RA+]
coincides exactly with what we have called RA+ above, and
similarly for RA, RA+, CQC – we will thus use these notations
interchangeably. We will also use UCQ to denote the simple
terms (or, equivalently, order 1 terms in normal form) that
are built up from the signature RA+by only using singleton
relational constants and by allowing the union operator to
appear only at the topmost level. Such a class translates
efficiently to Unions of Conjunctive Queries.

2.5 The containment problem
We now come to the main topic of this paper: we intro-

duce a generalization of the containment relation ⊆ between
terms and we define the main static analysis problem we will
deal with in the paper. From now on, C and C′ will denote
two generic classes of terms and I an interpretation for them.

For terms of order 0, the definition of containment is
straightforward: given two closed terms Φ and Φ′ of the
same relational type, we write Φ ⊆I Φ′ iff JΦKI ⊆ JΦ′KI
(note that the underlying interpretation I for fragments of
the Relational Algebra will be often omitted).

We then extend the definition of containment from rela-
tional terms to order n > 0 queries as follows. Given two
closed terms Φ = λX.ϕ and Φ′ = λX.ϕ′ of the same query
type T → T ′, we write

Φ ⊆I Φ′ iff ∀ x ∈ DomI(X) . Φ(x) ⊆I Φ′(x).

As an example, given two order 2 terms Φ and Φ′ of the same
type, we write Φ ⊆λRA+ Φ′ iff, for all instances Q1, ..., Qm,
R1, ..., Rn of the formal arguments Q1, ..., Qm, R1, ..., Rn in
Φ and Φ′, with each Qi ranging over the set of queries of
Positive Relational Algebra and each Ri ranging over the
set of finite relations, we have JΦK(Q1, ..., Qm, R1, ..., Rn) ⊆
JΦ′K(Q1, ..., Qm, R1, ..., Rn).

Definition 2. The containment problem for lefthand-
side terms in C and righthandside terms in C′, under the
interpretation I, consists of deciding, given two terms Φ ∈ C
and Φ′ ∈ C′ of the same type, whether Φ ⊆I Φ′.

It is worth remarking that the containment problem sub-
sumes several crucial problems related to (higher-order)
queries and, more generally, functional programs, such as
satisfiability (i.e., given a term Φ, decide whether there is
an input x such that Φ(x) evaluates to true) and the ex-
tensional equivalence (i.e., given Φ and Φ′, decide whether
Φ(x) = Φ′(x) for every input x). As an example, two terms
Φ and Φ′ are extensionally equivalent, under an underlying
interpretation I, iff Φ ⊆I Φ′ and Φ′ ⊆I Φ.

We will always consider the computational complexity of
our problems in terms of the size of the terms, as defined
earlier in this section.

We conclude the section with some examples that show
how the containment relation may depend on the underlying
interpretation for the domains of the query variables.

Example 2. Let R be a variable of relational type R =
(a), with Dom(a) = Z, and let Q be a variable of query type
R→ R. Consider the order 2 terms:

Φ = λQ. λR.Q
`
Q
`
σa=1(R)

´´
Φ′ = λQ. λR.Q

`
σa=1(R)

´
over the signature CQ. Take an arbitrary query constant Q

and an arbitrary relational constant R as instances of Q and
R. Note that σa=1(R) is either a singleton or the empty set.
If a CQ Q returns a non-empty relation on input σa=1(R),
then it must return a singleton consisting either of the tuple
t1, with t1.a = 1, or the tuple t2, with t2.a = c, for some
constant c that appears in Q. Now, if Q

`
σa=1(R)

´
= {t1},

then, by monotonicity, we have Q
`
Q
`
σa=1(R)

´´
= {t1}. Oth-

erwise, if Q
`
σa=1(R)

´
= {t2}, then case analysis on Q shows

that Q
`
Q
`
σa=1(R)

´´
must be either the singleton {t2} or the

empty set. Therefore, we have that Φ is contained in Φ′ un-
der the interpretation of the query variables by Conjunctive
Queries, shortly, Φ ⊆λCQ Φ′. On the other hand, we have
Φ *λRA+ Φ′, since we can take Q such that Q

`
{t1}

´
= {t2}

and Q
`
{t2}

´
= {t3}, with t1.a = 1, t2.a = 2, and t3.a = 3.

Example 3. Let R be a variable of relational type R =
(a), with Dom(a) = Z, and let Q be a variable of query type
R→ ε. Consider the order 2 terms:

Φ = λQ. λR. π∅
`
σb=2

`
Q(σa=1(R))

´´
1

π∅
`
σb=3

`
Q(σa=1(R))

´´
Φ′ = λQ. λR. π∅

`
σa=1

`
σa=2(R)

´´
(Φ′ returns always false)

over the signature CQ. When we instantiate Q by a CQ Q,
Φ(Q) turns out to be unsatisfiable, since for any instance R of
R, we have σa=1(R) is either a singleton or the empty set and
hence σb=2

`
Q(σa=1(R))

´
and σb=3

`
Q(σa=1(R))

´
cannot return

a non-empty set at the same time. However, if we choose
R = {t1} and Q to be a union of conjunctive queries in such
a way that Q(R) = {t2} ∪ {t3}, where t1.a = 1, t2.a = 2, and
t3.a = 3, then Φ(Q, R) evaluates to true. This shows that
Φ ⊆λCQ Φ′ and Φ *λRA+ Φ′.

Example 4. Let R1, R2 be two variables of relational type
R = (a), with Dom(a) = Z, and let Q be a variable of query
type R → ε. Consider the order 2 terms:

Φ = λQ. λR1. λR2. Q(R1)

Φ′ = λQ. λR1. λR2. Q(R1 ∪R2)

over the signature RA+. For every monotone query Q (and,
in particular, for every query of the Positive Relational
Algebra) and for every pair of relations R1, R2, we have
Q(R1) ⊆ Q(R1 ∪ R2). Thus, Φ ⊆λRA+ Φ′. On the other hand,
for any signature F that extends RA+ with the difference op-
erator \, we have Φ *λF Φ′, since we can choose R1 = {t1},
R2 = {t2}, with t1.a = 1 and t2.a = 2 as instances of R1, R2,
and Q = λS. true \ π∅

`
σa=2(S)

´
as an instance of Q.

3. CONTAINMENT OF HIGHER-ORDER
QUERIES:
POSITIVE RELATIONAL ALGEBRA

The goal of this section will be to prove tight bounds on
the complexity of the containment problem for order 2 terms

in normal form, namely, for higher-order queries, where the
formal arguments (i.e., the query variables and the relational
variables) are interpreted by terms of the Positive Relational
Algebra.

3.1 The complexity of higher-order contain-
ment

The goal of this subsection is to prove:

Theorem 1. The problem of deciding the containment
Φ ⊆λRA+ Φ′, where Φ,Φ′ ∈ Terms↓2[RA+], is ΠP

2 -complete.

We will need to build up a bit of infrastructure first. We
start by introducing some variants of the classical problem
of deciding containment of CQs in UCQs. The main varia-
tion is that containment is relative to a set of constraints of
the form Ri ⊆ Rj (positive constraints) or Ri * Rj (negative
constraints), where Ri and Rj are relational symbols. More-
over, we introduce a disjunctive variant of the constrained
containment problem.

Definition 3.

• Constrained Containment Problem: given two queries
Q, Q′ of the same type R̄ → S and given a set Σ of con-
straints over appropriate relations for R̄, the problem
consists of deciding whether JQK(R̄) ⊆ JQ′K(R̄) holds for
all instances R̄ satisfying the constraints in Σ;

• Constrained Disjunctive Containment Problem: given
some queries Q1, ..., Qn and Q′1, ..., Q

′
n, having types R̄ →

S1, ..., R̄ → Sn, and given a set Σ of constraints over
appropriate relations for R̄, the problem consists of de-
ciding whether, for every instance R̄ satisfying Σ, there
is an index 1 ≤ i ≤ n such that JQKi(R̄) ⊆ JQ′Ki(R̄)
holds.

If the set Σ of constraints in the above definition is not spec-
ified (or it always evaluates to true), then the two problems
are simply called containment problem and disjunctive con-
tainment problem. Note that the (constrained) disjunctive
containment problem is more general than the (constrained)
containment problem.

The first ingredient of the proof of Theorem 1 is the fol-
lowing proposition.

Proposition 2. The disjunctive containment problem
for lefthandside CQs and righthandside RA+-queries, un-
der positive and negative containment constraints, is NP-
complete.

We will also need some basic facts about the transforma-
tion of a given RA+-query into an equivalent union of con-
junctive queries. Such a transformation, which may imply
an exponential blowup, is achieved by “pushing upward” all
occurrences of the union operator of the relational algebra.
Formally, the transformation rules are as follows:

ρ{a/b}(Q1 ∪ Q2) ; ρ{a/b}(Q1) ∪ ρ{a/b}(Q2)

σc(Q1 ∪ Q2) ; σc(Q1) ∪ σc(Q2)

πA(Q1 ∪ Q2) ; πA(Q1) ∪ πA(Q2)

(Q1 ∪ Q2) 1 Q3 ; (Q1 1 Q3) ∪ (Q2 1 Q3)

Q1 1 (Q2 ∪ Q3) ; (Q1 1 Q2) ∪ (Q1 1 Q3).

By repeatedly applying these rules, one can transform any
RA+-query Q into an equivalent union of conjunctive queries

of the form Q̃ = Q̃1 ∪ ...∪ Q̃N , the flattening of Q, where N is
bounded by an exponential in the size |Q| of Q and Q̃1, ..., Q̃N
are conjunctive queries of size at most |Q|. The following
simple lemma shows that the problem of checking whether
a given conjunctive query appears in the flattening of an
RA+-query is in NP.

Lemma 3. The problem of deciding, given an RA+-query
Q and a CQ Q′, whether Q′ appears as a conjunct in the
flattening Q̃ = Q̃1 ∪ ... ∪ Q̃N of Q is in NP.

Now, it is convenient to generalize the containment re-
lation to tuples of relations: given two tuples of relations
R̄ = (R1, ..., Rm) and R̄′ = (R′1, ..., R

′
m) of the same types, we

write R̄ ⊆ R̄′ iff Ri ⊆ R′i holds for all indices 1 ≤ i ≤ m.
Hereafter, we say that a query Q is monotone iff, for every
tuples R̄ = (R1, ..., Rm) and R̄′ = (R′1, ..., R

′
m) of relations of

appropriate types, R̄ ⊆ R̄′ implies Q(R̄) ⊆ Q(R̄′).
The last component of the proof will be the following

“quantifier elimination” result for monotone queries, stat-
ing that the existence of a query satisfying certain equalities
between input and output relations reduces to a boolean
combination of containments between these relations.

Proposition 4. Fix m > 0 and, for all 1 ≤ i ≤ m, let
S̄ → Ti be an order 1 query type. Moreover, fix k > 0 and,
for all 1 ≤ j ≤ k, let (i) ij be an index from {1, ...,m}, (ii)
S̄j be a tuple of relations of types in S̄, and (iii) Tj be a
relation of type Tij . The following properties are equivalent:

1. there exist some RA+-queries (or, equivalently, some
UCQs) Q1, ..., Qm such that Qij (S̄j) = Tj for all j ∈
{1, ..., k};

2. for every pair of indices j, j′ ∈ {1, ..., k}, if ij = ij′
and S̄j ⊆ S̄j′ , then Tj ⊆ Tj′ .

Proof. The implication from 1. to 2. is trivial from the
monotonicity of RA+-queries and UCQs. The implication
from 2. to 1. is proved as follows. First, we introduce, for
every index j ∈ {1, ..., k}, a UCQ Q(j) that, given a tuple R̄

of input relations, returns either Tj or the empty relation,
depending on whether or not the tuple S̄j is contained in the
tuple R̄. Note that, by construction, we have Q(j)(S̄j) = Tj .
We then define the UCQs Q1, ..., Qm as follows. For every i∗ ∈
{1, ...,m}, Qi∗ is the union of the conjunctive queries Q(j)

over all indices j such that ij = i∗. It is easy to check that
property 2. implies Qij (S̄j) = Tj for all j ∈ {1, ..., k}.

Note: This result depends heavily on the presence of
data constants. Characterizations of query definability with
constant-free languages do exist — in the database com-
munity these date back to the work of Bancilhon [5] and
Paredaens [28] (see also the recent [14], whose results bear
some similarity to the proposition above). However such
characterizations are more complex, and thus query defin-
ability in these other languages can not be reduced to a set
of inclusion constraints.

We are now ready to prove that the higher-order contain-
ment problem is in ΠP

2 .

Proposition 5. The problem of deciding the contain-
ment Φ ⊆λRA+ Φ′, where Φ,Φ′ ∈ Terms↓2[RA+], is in ΠP

2 .

Proof. We fix two order 2 terms in normal form

Φ = λQ1 ... λQm. λR1 ... λRn. τ

Φ′ = λQ1 ... λQm. λR1 ... λRn. τ
′

where each Qi is an order 1 query variable, each Rj is a rela-
tional variable, and τ, τ ′ are well-typed terms of order 0 over
the variables Q1, ..., Qm, R1, ..., Rn and the constants from
the signature RA+. Below, we provide a logical characteriza-
tion of the non-containment relationship Φ *λRA+ Φ′, that
is, the existence of some queries Q1, ..., Qm of the positive
relational algebra and some relations R1, ..., Rn that witness
JτK(Q̄, R̄) * Jτ ′K(Q̄, R̄).
We start by introducing new relations for the intermediate
outputs produced by the subterms of τ and τ ′ (we explain
the construction for τ only, the one for τ ′ is similar). We
enumerate all occurrences of proper subterms of τ that are
arguments to a query variable Qi, for some 1 ≤ i ≤ m. Let
σ1, ..., σk be such an enumeration. Without loss of gener-
ality, we can assume that j < j′ holds whenever σj occurs
inside σj′ (note that we distinguish between possible mul-
tiple occurrences of the same subterm). We then associate
with each occurrence σj the following objects: (i) the index
ij ∈ {1, ...,m} of the query variable to which σj is applied,
(ii) two relations Sj , Tj (of appropriate types), (iii) a term Pj
obtained from σj by replacing any top-level subterm of the
form Qi′(σj′) by Tj′ . We further introduce an additional
query constant P0, obtained from τ by replacing any top-
level subterm of the form Qi′(σj′) by Tj′ . Note that, since
τ is in normal form, all its subterms are applied to query
variables and query constants only. This means that each
term Pj , with 0 ≤ j ≤ k, is an RA+-query over the rela-
tions R1, ..., Rm, T1, ..., Tk. Analogous definitions are given
for the objects i′j , S

′
j , T
′
j , P
′
j with respect to the occurrences

of subterms in τ ′.
We can now reduce the non-containment relationship Φ * Φ′

to the following property (for the sake of brevity, we use the
shorthands R̄ = (R1, ..., Rn), S̄ = (S0, ..., Sk), etc.):

∃ Q1, ..., Qm

∃ R̄, S̄, T̄ , S̄′, T̄ ′. P0(R̄, T̄ , T̄ ′) * P′0(R̄, T̄ , T̄ ′) ∧V
1≤j≤k

Pj(R̄, T̄ , T̄
′) = Sj ∧

V
1≤j≤h

P′j(R̄, T̄ , T̄
′) = S′j ∧V

1≤j≤k
Qij (Sj) = Tj ∧

V
1≤j≤h

Qi′j (S′j) = T ′j .

(1)
By exploiting Proposition 4, we can get rid of the existential
quantification over Q1, ..., Qm thus obtaining:

∃ R̄, S̄, T̄ , S̄′, T̄ ′. P0(R̄, T̄ , T̄ ′) * P′0(R̄, T̄ , T̄ ′) ∧V
1≤j≤k

Pj(R̄, T̄ , T̄
′) = Sj ∧

V
1≤j≤h

P′j(R̄, T̄ , T̄
′) = S′j ∧V

1≤j,j′≤k
ij=ij′

Sj ⊆ Sj′ → Tj ⊆ Tj′ ∧
V

1≤j,j′≤h
i′j=i′

j′

S′j ⊆ S′j′ → T ′j ⊆ T ′j′ ∧

V
1≤j≤k
1≤j′≤h
ij=i′

j′

Sj ⊆ S′j′ → Tj ⊆ T ′j′ ∧
V

1≤j≤h
1≤j′≤k
i′j=ij′

S′j ⊆ Sj′ → T ′j ⊆ Tj′ .

(2)
It is convenient now to rename the relational variables Tj
and T ′j′ , where j ranges over {1, ..., k} and j′ ranges over
{1, ..., h}, by new relational variables Ui, where i ranges

over an appropriate set I of indices isomorphic to {1, ..., k}]
{1, ..., h}, and, similarly, replace the queries Pj(R̄, T̄ , T̄

′) and
P′j(R̄, T̄ , T̄

′) by new queries Oi(R̄, Ū). Accordingly, the con-
ditions of the form Sj ⊆ Sj′ → Tj ⊆ Tj′ will be replaced
by equivalent conditions of the form Oi(R̄, Ū) ⊆ Oi′(R̄, Ū)→
Ui ⊆ Ui′ , where the pair (i, i′) is either (0, 0) or an element
of an appropriate subset D of I × I.
Now, for every partition D = (D+, D−) of D, we denote by
ΣD the set of all positive constraints of the form Ui ⊆ Ui′ ,
with (i, i′) ∈ D+, and all negative constraints of the form
Ui * Ui′ , with (i, i′) ∈ D−. Intuitively, each ΣD is a max-
imal set of containment relationships between the various
instances Ui and Ui′ , for all (i, i′) ∈ D. Therefore, Property
(2) holds iff there exist a partition D = (D+, D−) of D such
that

∃ R̄, Ū � ΣD. O0(R̄, Ū) * O′0(R̄, Ū) ∧V
(i,i′)∈D−

Oi(R̄, Ū) * Oi′(R̄, Ū). (3)

We observe that any containment relationship of the form
Oi(R̄, Ū) * O′i′(R̄, Ū), where Oi is an RA+-query, is equiv-
alent to an existential quantification over all containment
relationships of the form Õi,l(R̄, Ū) * O′i′(R̄, Ū), where Õi,l is
a conjunct of the flattening of Oi. This shows that Property
(3) above is violated (and hence Φ ⊆λRA+ Φ′) iff, for every
partition D = (D+, D−) of D and every choice of a conjunct
Õ0,l0 from the flattening of O0 and for each choice of a con-
junct Õi,li,i′ from the flattening of Oi, for each (i, i′) ∈ D−,
the following instance of the constrained disjunctive contain-
ment problem is satisfied:

∀ R̄, Ū � ΣD. Õ0,l0(R̄, Ū) ⊆ O′0(R̄, Ū) ∨W
(i,i′)∈D−

Õi,li,i′ (R̄, Ū) ⊆ Oi′(R̄, Ū). (4)

Such a characterization, together with Lemma 3 (which
proves that a conjunct of the flattenings of an RA+-query
can be guessed non-deterministically in polynomial time)
and Proposition 2 (which proves the NP membership for
the constrained disjunctive problem with lefthandside CQs
and righthandside terms RA+-queries, under positive and
negative containment constraints), shows that the problem
of deciding Φ ⊆λRA+ Φ′ is in ΠP

2 .

Note that the following proposition gives immediately a
ΠP

2 -hardness result also for the higher order containment
problem Φ ⊆λRA+ Φ′.

Proposition 6. The problem of deciding the contain-
ment Q ⊆ Q′, where Q is an RA+-query (indeed, a CQC) and
Q′ is a CQ, is ΠP

2 -hard.

The proof of this proposition uses the same technique as the
ΠP

2 -hardness proof for the problem of deciding containment
between two monotonic relational expressions, see, for in-
stance, [32]. The above hardness result, however, strongly
relies on the use of constants.

Proposition 5 and Proposition 6 together give precisely
the claim of Theorem 1. Moreover, in the proof of Propo-
sition 5, we use only a few main properties, in particular:
(i) the constrained disjunctive containment for lefthandside
CQs and righthandside RA+-queries, under positive and neg-
ative containment constraints, is in NP, and (ii) the set of
all possible queries that can be used to instantiate an order

1 variable is as expressive as the set of all monotone queries.
Therefore, we can extend the result as follows:

Corollary 7. Let RA+, 6= be the signature that extends
RA+ with selection operators that use equalities and inequal-
ities between attributes, or between attributes and constants.
Then, the problem of deciding the containment Φ ⊆λRA+, 6=

Φ′, where Φ,Φ′ ∈ Terms↓2[RA+], is ΠP
2 -complete.

3.2 Adding dependencies
We now consider higher-order containment relative to in-

tegrity constraints. We focus on two widely-studied con-
straint classes, namely, functional dependencies and inclu-
sion dependencies [1]. The containment problem for CQs
under sets of functional dependencies has been deeply inves-
tigated starting from [2] and it is known to be NP-complete.

Below, given two higher-order queries Φ,Φ′ ∈
Terms↓2[RA+] of the same type and given a set ∆ of
constraints (e.g., functional dependencies) over the formal
arguments of Φ and Φ′, we write Φ ⊆λRA+,∆ Φ′ iff, for
every input Q̄, R̄ that satisfies the constraints in ∆, we have
JΦKλRA+(Q̄, R̄) ⊆ JΦ′KλRA+(Q̄, R̄).

We can extend Theorem 1 to this setting:

Theorem 8. The problem of deciding the containment
Φ ⊆λRA+,∆ Φ′, where Φ,Φ′ ∈ Terms↓2[RA+] and ∆ is a set of

functional dependencies, is ΠP
2 -complete.

The proof of the complexity upper bound goes along the
same lines of the proof of Proposition 5. More precisely,
we first exploit Proposition 4 (which is independent of the
presence of constraints on the relations) to reduce the con-
tainment problem for higher-order queries to the problem of
universally guessing and deciding suitable instances of the
disjunctive containment problem involving lefthandside CQs
and righthandside RA+-queries, under positive and negative
containment constraints and the additional functional de-
pendencies. We then argue that the latter variant of the
disjunctive containment problem is in NP:

Proposition 9. The disjunctive containment problem
for lefthandside CQs and righthandside RA+-queries, under
positive and negative containment constraints and functional
dependencies, is NP-complete.

The proof that Theorem 8 follows from the proposition
above mimics the argument in Theorem 1.

Now, we turn towards higher-order containment in the
setting of inclusion dependencies.

Theorem 10. The problem of deciding the containment
Φ ⊆λRA+,∆ Φ′, where Φ,Φ′ ∈ Terms↓2[RA+] and ∆ is a set of
inclusion dependencies, is PSPACE-complete.

Proof. It is known that the containment problem be-
tween two CQs under a set ∆ of inclusion dependencies
is PSPACE-hard (see, for instance, [10]). In addition,
CQs, considered as constant functionals, are special cases
of higher-order queries over the signature CQ. Thus, the
higher order containment problem under a set of inclusion
dependencies is PSPACE-hard as well.
We now prove the PSPACE upper bound. Using the same
transformation as in the proof of Theorem 1, we reduce the

higher order containment problem under a set ∆ of inclu-
sion dependencies to the problem of universally guessing and
deciding suitable instances of the disjunctive containment
problem that have the following form:

∀ R̄, Ū � ΣD ∪∆. Õ0,l0(R̄, Ū) ⊆ O′0(R̄, Ū) ∨W
(i,i′)∈D−

Õi,li,i′ (R̄, Ū) ⊆ Oi′(R̄, Ū).

where ΣD is a set of positive and negative containment con-
straints and ∆ is the set of inclusion dependencies.
Now, we observe that positive containment constraints are
special forms of inclusion dependencies. Thus, in order
to decide the above property, it is sufficient to consider
the disjunctive containment problem for lefthandside CQs
and righthandside RA+-queries, under negative containment
constraints and inclusion dependencies. By a straightfor-
ward generalization of the proof of Proposition 2, this prob-
lem can be reduced to the containment problem for lefthand-
side CQs and righthandside RA+-queries, under inclusion
dependencies only. Finally, the latter problem can be solved
in polynomial space by guessing a conjunct of the flattening
of the righthandside RA+-query and by deciding a classical
containment problem between CQs under inclusion depen-
dencies, which is known to be in PSPACE [19].

3.3 Tractable cases
We conclude this section by considering special instances

of the higher-order containment problem that can be solved
efficiently, namely, by a non-deterministic polynomial-time
algorithm (or, even better, by a deterministic polynomial-
time algorithm).

Definition 4. We define the class of single-argument
terms as the least set that contains all terms of the form:

• Q(R1, ..., Rn), where R1, ..., Rn are relational variables
and Q is an RA+-query with n formal arguments;

• Q
`
Q(τ), ..., Q(τ)

´
, where τ is a single-argument term

with at most one free query variable Q and Q is an
RA+-query, whose input is instantiated with as many
copies of the term Q(τ) as the number of formal argu-
ments of Q.

We then define single-argument higher-order queries as the
closures (by λ-abstraction over all free variables) of single-
argument terms.

We associate with each single-argument higher-order
query Φ the (unique) sequence of RA+-queries that generates
the body of Φ in the grammar above, namely, the sequence
Q1, ..., Qn such that Φ = λQ. λR̄. Qn

`
..., Q(Qn−1(...)), ..

´
. We

call this sequence the generating sequence for τ and its length
the nesting-depth of Φ.

Example 5. The term λQ. λR. ρa/b
`
Q(R)

´
1

ρa′/b′
`
Q(R)

´
is a single-argument higher-order query,

whose generating sequence consists of single RA+-query
Q1 = λS. ρa/b(S) 1 ρa′/b′(S). On the other hand, the term
λQ. λR1. λR2. Q(R1) 1 Q(R2) is not a single-argument
higher-order query, since the two formal arguments of the
operator 1 are instantiated with syntactically different
terms.

Hereafter, we say that a query Q is non-constant if its
equivalent rule-based form has at least one variable in the
head. In the special case of single-argument higher-order
queries where the generating sequences consists of non-
constant RA+-queries only, we can reduce higher order con-
tainment to ordinary containment:

Proposition 11. Given two single-argument higher-
order queries Φ,Φ′ of the same type and with generating
sequences Q1, ..., Qm and Q′1, ..., Q

′
n, both consisting of non-

constant RA+-queries, we have

Φ ⊆λRA+ Φ′ iff

(
m = n

Qi ⊆ Q′i for all 1 ≤ i ≤ m.

Proof. As the“if”direction is trivial, we sketch the proof
of the opposite direction. We assume that either m 6= n, or
Qi * Q′i for some 1 ≤ i ≤ m (= n), and we prove that
Φ 6⊆λRA+ Φ′ follows. If m 6= n, then we introduce instances
for the relational and query variables such that: (i) for all
indices 1 ≤ i ≤ min(m,n), the results of the Φ-subquery
Q(Qi(. . .)) and the Φ′-subquery Q(Q′i(. . .)) are equivalent,
and (ii) the result of Φ is not contained in the result of Φ′.
In the other case, we let k be the smallest index such that
Qk * Q′k. As before, we instantiate the relational and query
variables with suitable values such that: (i) the results of
the Φ-subquery Q(Qi(. . .)) and the Φ′- subquery Q(Q′i(. . .))
are equivalent for all indices 1 ≤ i ≤ k, and (ii) the result of
Φ is not contained in the result of Φ′.

From Proposition 11, we immediately obtain the following
result:

Theorem 12. The problem of deciding the containment
Φ ⊆λRA+ Φ′, where Φ,Φ′ are single-argument higher-
order queries, with generating sequences consisting of non-
constant UCQs, is NP-complete.

Moreover, if we further restrict the single-argument
higher-order queries in such a way that their generating
sequences contain only non-constant queries in a certain
tractable class, then we immediately obtain an analogous
class of higher-order queries for which the containment prob-
lem turns out to be tractable (i.e., in P). For instance, con-
sider the case of acyclic CQs, where evaluation becomes
tractable [38]. Likewise, we have that containment of UCQs
in acyclic CQs is tractable. We can then extend this to:

Corollary 13. The problem of deciding the contain-
ment Φ ⊆λRA+ Φ′, where Φ is a single-argument higher-order
query, with generating sequence consisting of non-constant
UCQs, and Φ′ is a single-argument higher-order query, with
generating sequence consisting of non-constant acyclic CQs,
is tractable.

We can easily replace, in the above result, the acyclicity con-
dition over order 1 queries by other conditions that guaran-
tee tractability for ordinary conjunctive query containment
(e.g., bounded treewidth, bounded hyper-treewidth, [15]).

4. HIGHER-ORDER CONTAINMENT IN
OTHER BASES

We now consider the situation when we move from Posi-
tive Relational Algebra to other bases.

4.1 The general relational algebra case
In this subsection we focus on the higher-order contain-

ment problem for the case where query variables are instanti-
ated by queries of the full relational algebra. We will still re-
strict the constant operators used in the higher-order queries
to range over the signature RA+, since it is well-known that
the containment problem for terms built up from the full
relational algebra is undecidable. In contrast to this, we
show that extending the base does not make higher-order
containment harder.

Theorem 14. The problem of deciding the containment
Φ ⊆λRA Φ′, where Φ,Φ′ ∈ Terms↓2[RA+], is ΠP

2 -complete.

The complexity lower bound is trivial from previous results.
As regards the complexity upper bound, we remark here that
the key ingredient, as before, is a “quantifier elimination”
property, namely, the analog of Proposition 4 for queries
quantified over the full Relational Algebra:

Proposition 15. Fix m > 0 and, for all 1 ≤ i ≤ m, let
S̄ → Ti be an order 1 query type. Moreover, fix k > 0 and,
for all 1 ≤ j ≤ k, let (i) ij be an index from {1, ...,m}, (ii)
S̄j be a tuple of relations of types in S̄, and (iii) Tj be a
relation of type Tij . The following properties are equivalent:

1. there exist some RA-queries Q1, ..., Qm such that
Qij (S̄j) = Tj for all j ∈ {1, ..., k};

2. for every pair of indices j, j′ ∈ {1, ..., k}, if ij = ij′
and S̄j = S̄j′ , then Tj = Tj′ .

4.2 The case of conjunctive queries
Here we show that moving to the conjunctive query base

does not make the higher-order containment problem eas-
ier. Indeed, Proposition 6 gives immediately the following
hardness result:

Corollary 16. Let I be any arbitrary interpretation for
the query variables (e.g., I = λCQC). The problem of decid-

ing the containment Φ ⊆I Φ′, where Φ,Φ′ ∈ Terms↓2[CQC]
is ΠP

2 -hard. The lower bound holds also in the case where
Φ or Φ′, or both of them, contains no occurrences of query
variables.

A similar lower bound holds for the higher-order contain-
ment problem in the signature CQ:

Proposition 17. The problem of deciding the contain-
ment Φ ⊆λCQ Φ′, where Φ,Φ′ ∈ Terms↓2[CQ] and Φ′ contains
no occurrences of query variables, is ΠP

2 -hard.

The proposition is proved by using a reduction similar to
the proof of Proposition 6, with the use of a query variable
in Φ instead of constants.

Of course, the hardness result does not hold in the sym-
metric case, where the lefthandside higher-order query has
no occurrences of query variables:

Proposition 18. The problem of deciding the contain-
ment Φ ⊆λCQ Φ′, where Φ,Φ′ ∈ Terms↓2[CQ] and Φ contains
no occurrences of query variables, is NP-complete.

Proof. By monotonicity, it suffices to show that contain-
ment hold when all the query variables in Φ′ return ∅. Thus,
we can reduce this problem to the containment problem be-
tween two CQs, which is known to be NP-complete.

As for the upper bounds, at the moment, we are only able
to provide a result that matches with Proposition 17:

Proposition 19. The problem of deciding the contain-
ment Φ ⊆λCQ Φ′, where Φ,Φ′ ∈ Terms↓2[CQ] and Φ′ contains
no occurrences of query variables, is in ΠP

2 .

The proof of the above result is based on the idea that,
in order to decide the containment Φ ⊆λCQ Φ′, it is suffi-
cient to consider instantiations of query variables having size
bounded by a polynomial in the size of the input terms.

5. UNNORMALIZED TERMS
Our results on higher-order containment have focused on

terms in normal form. We now discuss the situation for
non-normalized terms. Note that the issues dealt with in the
previous sections were fairly independent of the syntax of the
calculus, depending rather on the range of query variables –
they involve reasoning about the existence of queries having
certain properties, which is our main interest. Unnormalized
terms have an additional source of complexity, related to
the phenomenon of sharing subterms during β-reductions;
it is exactly the source of complexity that is eliminated in
considering normalized terms.

We examine this in isolation from the prior issue, by fo-
cusing on questions about terms of order at most 1, that is,
terms that evaluate to either relations or queries, rather than
representing functionals. We recall that the set of relational
(resp., query) closed terms of degree 1, over a signature F ,
is denoted by Terms0,1[F] (resp., Terms1,1[F]). All of the
tight bounds we have are for unnormalized terms of degree
1.

5.1 Succinctness of unnormalized terms
We start by explaining that sharing of subterms can make

unnormalized terms much more succinct than their normal-
ized counterparts. From a standard argument in functional
programming (similar results occur in the context of nested
relational algebra and functional query languages, see e.g.
[20]) one can see that terms that use query and relation
variables are much more succinct than simple RA+-terms.
What is less well-noted, perhaps, is that the same holds for
degree 1 terms with respect to “flat” unions of conjunctive
queries. That is:

Proposition 20. There are terms Φn ∈ Terms1,2[CQ]
(i.e. using query variables but evaluating to a query) of size

O(n) where any equivalent RA+-query is of size at least 22n

.
There are such terms in Terms1,1[RA+] such that any equiv-

alent union of conjunctive queries is of size at least 22n

.

Proof. As for the first part, we observe that the calcu-
lus allows terms of degree 2 and size O(n) that check for the
existence of a path of length 2n in the directed graph repre-
sented by a given binary relation R. An example of such a
term is ϕn = λR. [n](Q)(R), where [n] = λQ. λR.Qn(R) is
a typed variant of a Church numeral and Q is a conjunctive
query (i.e., a simple CQ-term) that maps a binary relation R

to the composition R ◦ R =
˘

(x, z) : ∃ y . (x, y) ∈ R, (y, z) ∈
R
¯

. Moreover, the degree 2 term Φn = λR. (ϕ2 ◦ ...◦ϕ2)(R),
where ϕ2 ◦ϕ2 is a shorthand for the functional composition
λR.ϕ2(ϕ2(R)), is equivalent (up to β-reduction) to a term
of degree 2 of the form λR. [2n](Q)(R). This term can check

for the existence of a path of length 22n

in a given binary
relation R. An Ehrenfeucht-Fräısse game argument finally
shows that any RA+-query with less than 22n

variables can-
not check this.
As for the second part, let A and B be two unary predicates
and let R be a binary predicate. Let Φn be a query term of
degree 1 that checks whether the graph represented by the
binary relation R contains a path of length 2n consisting of
nodes satisfying A ∨ B. One can easily write this with a
term of size O(n). Now, consider a UCQ Φ′n equivalent to
Φn. Each disjunct Di in Φ′n consists of a collection of ex-
istentially quantified variables ~x followed by a conjunction
Ci. Note that for any path π of size 2n, there is a model
Rπ that has that has an isomorphic copy of that path and
no other path of this size. For every such path π, let Dπ
be the disjunct that is satisfied in the corresponding model.
Clearly, any two non-isomorphic paths π and π′ have dis-
tinct corresponding disjuncts Dπ and Dπ′ . This shows that
any UCQ Φ′n equivalent to Φn contains doubly exponentially
many disjuncts.

5.2 Expressiveness of terms of degree 1
We now show that degree 1 terms are actually familiar ob-

jects in database querying. Recall that Datalog queries over
an input schema S consist of a collection of intensional pred-
icates P and a finite set of rules of the form H(~x)← B(~x),
where each xi is either a constant or a variable, the B(~x) are
conjunctive queries over P ∪ S , and the head predicates H
are intensional predicates. A Datalog query is non-recursive
if the dependency relation between intensional predicates is
acyclic. Datalog with Stratified Negation allows the bodies
B(~x) to contain negated predicates, but with the acyclicity
criterion preserved. In the proposition below, we focus on
boolean Datalog queries, in which there is a distinguished
0-ary goal predicate; the query returns true on an instance
iff the goal predicate is satisfied. The following is easy to
show, simply by translating between relational variables to
intensional predicates:

Proposition 21. There are polynomial translations be-
tween:

1. Terms1,1[RA] and Nonrecursive Datalog with Stratified
Negation

2. Terms1,1[RA+] and Nonrecursive Datalog
3. Terms1,1[CQ] and Nonrecursive Datalog in which every

intensional predicate occurs on the lefthandside of at
most one rule.

For brevity we avoid stating the similar characterization
for CQC, or the extension to the non-boolean case. Note
that Nonrecursive Datalog with Stratified Negation can be
translated in polynomial time (over models of size two) into
first-order logic or relational algebra [4, 36]. Nonrecursive
Datalog translates into positive existential first-order logic
in (provably worst case) exponential time; this in turn trans-
lates into Unions of Conjunctive Queries, again in exponen-
tial time. The earlier propositions indicate that this blow-up
is essential.

5.3 Complexity of terms of degree 1
We now turn to the complexity of evaluation of unnor-

malized terms of order 0 and degree 1 (namely, relational
terms where all variables have relational type) and of con-
tainment between unnormalized terms of order 1 and degree

1 (namely, query terms defined using λ-abstraction over re-
lational variables only).

We begin by dealing with the evaluation problem. Pre-
cisely, we want to decide, given a closed term Φ of relational
type τ and degree 1 and given a tuple t ∈ Dom(τ), whether
t belongs to the evaluation JΦK of Φ. The following complex-
ity result for the evaluation problem stems form Proposition
21 and from known results in the literature.

Proposition 22. The problem of evaluating JΦK, where
Φ ∈ Terms0,1[RA], is PSPACE-complete.

Indeed, relational terms of degree 1 correspond to first-order
logic formulas with “Let” definitions, i.e., built up hierarchi-
cally with equations of the form R(~x) = φ(~x), where φ men-
tions only input relations and predicates defined earlier; this,
in turn, is the same as Nonrecursive Datalog with Stratified
Negation, which is known to be PSPACE-complete [34] (this
is also credited to Immerman, perhaps because the terminol-
ogy of [34] is different: see Theorem 5.3 of [13]). PSPACE-
hardness is clear, since it is true for ordinary evaluation of
RA-queries.

Moreover, it is also true for CQC terms:

Proposition 23. The problem of evaluating JΦK, where
Φ ∈ Terms0,1[CQC], is PSPACE-hard.

A proof of the above result is by reduction from the reacha-
bility problem for synchronized products of graphs [22]: us-
ing a construction similar to the proof of Proposition 20, one
can indeed write a CQC term of order 0 and degree 1 that
checks whether two distinguished vertices are connected in-
side the synchronized product of a tuple of graphs (note
that this property is witnessed by the existence of a path of
length at most exponential in the total number of vertices
of the graphs). Therefore, we can conclude that all of our
evaluation problems are PSPACE-complete.

We now turn to the containment problem for terms of de-
gree 1 and order 1. Clearly this is undecidable for RA, since
even the satisfiability problem is undecidable. By Proposi-
tion 21, Terms1,1[RA+] containment is the same as Nonrecur-
sive Datalog containment. From unfolding the recursion, we
can get an upper bound of 2EXPTIME for this problem. We
do not present tight bounds for Terms1,1[RA+] in this work
— it is resolved in the subsequent paper [7]. We will focus
on smaller classes of terms. We first show that containment
of Terms1,1[CQ] in Terms1,1[RA+] is in PSPACE:

Proposition 24. The problem of deciding the contain-
ment Φ ⊆ Φ′, where Φ ∈ Terms1,1[CQ] and Φ′ ∈
Terms1,1[RA+], is in PSPACE.

Proof. The intuition behind the proof of the proposition
is that we can explore the unfolding of Φ in PSPACE. We
make this precise by giving canonical names to variables in
the unfolding.
Assume that a query Q is given as a set of rules Ru1 . . . Ruk
with Rui of the form Hi(~x)← φi(~x), where φi is a CQ men-
tioning only relations Hj : j < i. By a standard transfor-
mation [16] we can assume that each φi has only two occur-
rences of relation symbols in it. Let [Q] be the unfolding of Q
as a UCQ, obtained by recursively replacing an occurrence
of Hi(~x) with φi(~x). A partial unfolding is any intermediate
formula resulting from this process. A name is a sequence of

pairs (i, j) with i ≤ k, j ∈ {1, 2} of length at most k. We as-
sociate every atom and every variable in a partial unfolding
of [Q] with a name as follows: in the original Q, every atom is
associated with the empty name. If in partial unfolding η we
replace the jth occurrence O of Hi(~x) in η with φi(~x) to get
η′, then we associate every atom and also every variable that
was introduced in η′ with name(O), (i, j). Note that every
name is thus associated with at most one relation symbol
and many variables. It is easy to show that one can check
properties of names in PSPACE.
Our algorithm will now mimic the standard PSPACE algo-
rithm for evaluating a Nonrecursive Datalog query P on an
explicitly given database, but instead of guessing elements
of the database, it guesses a Q-name.

Since containment is harder than evaluation, we have that
the containment problem of Terms1,1[CQ] in Terms1,1[RA+]
is PSPACE-complete. More specifically, from the results
on the evaluation problem, we can say that the problem is
hard even when the lefthandside terms are as restricted as
possible and the righthandside terms do not use unions:

Corollary 25. The problem of deciding the contain-
ment Φ ⊆ Φ′, where Φ is a conjunctive query and Φ′ ∈
Terms1,1[CQC], is PSPACE-hard.

However, if we restrict the righthandside terms of the
containment problem, we do get a better bound for
Terms1,1[CQ]. The argument also uses the idea of compact
names, as in Proposition 24:

Theorem 26. The problem of deciding the containment
Φ ⊆ Φ′, where Φ ∈ Terms1,1[CQ] and Φ′ is a conjunctive
query, is NP-complete.

5.4 Complexity of terms of degree 2
So far we have focused on the complexity of the evalua-

tion and containment problems for either normalized terms
of order at most 2 or unnormalized terms of degree 1. By
combining these results with normalization bounds for the
simply-typed λ-calculus we obtain upper bounds for analo-
gous problems for our most general language: unnormalized
terms of degree 2.
β-reduction can reduce any term of degree 2 to a term of

degree 1 with at most an exponential blow-up (finer bounds
can be given in terms of the nesting of applications in the
term, see [6]). Thus Proposition 24 immediately yields an
EXPSPACE upper bound for the evaluation and the con-
tainment problems for terms in Terms1,2[CQ].

Similarly, reduction can be applied to get rid of unreduced
abstractions of degrees one and two, in doubly-exponential
time. Thus using Theorem 1, we obtain that the contain-
ment problem for terms in Terms2,2[RA+] is in 2EXPSPACE.

6. RELATED WORK
This paper is related to several lines of research in the

database community – both on database and programming
language integration and on querying metadata. We high-
light differences below.
λ-calculus and database query languages. One in-

spiration for our work comes from functional databases [18,
9, 27] which aim toward unification of database query lan-
guages with functional programming. Kannelakis and his

collaborators [18, 17] investigated embeddings of relational
query languages into typed λ-calculi. The goal is to code the
operational semantics of relational query languages in the
standard reduction operations of the host calculus. [18, 17]
give polynomial time encodings of standard languages, in-
cluding query languages with recursion mechanisms, within
variants of the λ-calculus. In contrast, in our work we do not
reduce querying to β-reduction, we simply combine query-
ing and reduction: relational operators are treated as fixed
constants, with their usual semantics, and we deal with
database instances as constants, not via encodings. Our
queries have low data complexity (e.g. within AC0), and
thus can not simulate list iteration and other recursion mech-
anisms.

Languages such as Machiavelli [27] and Kleisli [37] em-
bed database operations in a general-purpose functional lan-
guage (e.g. ML in both cases above). The type system of
the host language is extended with type constructors for var-
ious relational and object-oriented database features: e.g.
records, variant records, sets. Higher-order functions can
be formed and applied using the constructs of the host lan-
guage; in particular, the type system can constrain the do-
main and range of a function on database instances, but the
computational power of such functions is limited only by the
host language. In contrast, our languages restrict function
variables to range over query languages with clearly limited
expressive power.

The Monad Algebra of [33] is presented as a λ-calculus
over a type system capturing nested relational structures.
Rather than embed into a general-purpose calculus, they
allow functions to be built up via a collection of nested re-
lational operators. Koch has shown that these languages
are equivalent (modulo coding issues) to the functional
XML query language XQuery [20]. The expressive power
of queries that can arise in a nested relational language is
thus bounded: for example, the well-known conservativity
theorem of Paredaens and Van Gucht [29] implies that the
expressive power of such a language on relational data is no
more than that of relational calculus. The positive variant
of Monad Algebra, defined also in [20], is analogous to our
languages. However the presence of nesting operators gives
nested relational languages the ability to build new values
from the database – an ability our query language does not
have – and this has implications for complexity. Our degree
one terms are much weaker than Nested Relational Algebra
(NRA) expressions; they correspond merely to first-order
logic with let bindings, which can be converted tractably
to ordinary relational algebra expressions (on models of size
> 1 [4]). Koch has shown (modulo complexity-theoretic
assumptions) [20] that this can not be done for nested re-
lational algebra terms. On the other hand, our degree two
terms are not efficiently translatable to NRA terms: they
can check for the existence of a doubly-exponential sized
path in a graph. In contrast, it follows from [8] that positive
Monad Algebra terms can be converted in exponential time
to flat existential first-order queries. Using games one can
derive that such term cannot check for doubly-exponential
sized paths. [20] has shown that the evaluation problem is
NEXPTIME-hard even for the positive fragment of Monad
Algebra.

The equivalence problems we deal with in Sections 3 and
4 have (to our knowledge) no natural analog in the exist-
ing functional query literature. For example, in the Monad

Algebra of [33] all variables range over database instances –
query variables and λ-abstraction over queries are not sup-
ported.

Containment and equivalence for extensions of
the relational model. Query equivalence and contain-
ment has been studied extensively for many relational query
classes: e.g. conjunctive queries and union of conjunctive
queries, starting with [12]. There is also work for NRA and
other Complex object models. [25] investigates containment
and equivalence in a complex object analog of conjunctive
queries, referred to as “Conjunctive Idealized Algol”. There
are several possible notions of containment and equivalence
in this setting: [25] define a notion of simulation that corre-
sponds roughly to our notion of higher-order containment.
However, our data model does not include nesting explic-
itly, and we do not know of any coding of nested relations
as functions that allows one to reduce Conjunctive Idealized
Algol equivalence to Higher-Order query equivalence.

Meta-data and higher-order querying. Several re-
searchers have looked at the issue of uniformly handling
data and metadata within a query language – particularly
see [23, 26, 30, 31]. The emphasis in most of these works
is on queries that include relation names and column info
in the input output, in manipulating relational queries. An
exception is the work of Neven et. al. in [26], which gives a
language that can manipulate tables containing both queries
and data. The language of [26] is much more powerful than
ours, and extends standard query languages in an intuitive
way. But they do not satisfy either of our two design goals,
since they are relationally complete and allow one to access
the syntactic structure of queries.

Query specification. Recently there has been consider-
able interest in query specification formalisms [24, 35, 11].
The motivation is to describe the conjunctive queries that
are supported by a particular external source. In the prior
formalisms the query is specified by describing its syntax;
for example, [24, 35] use a variant of Datalog to describe the
structure of a family of parameterized queries. In contrast,
our formalisms do not allow access to the syntax of a query.

7. CONCLUSIONS
We have defined a family of languages which can define

ordinary queries and also query functionals, generalizing tra-
ditional CQs and Unions of CQs. Our languages have two
advantages: the output of a query transformation depends
only on the semantics of the input queries, and many basic
analysis problems are decidable.

In particular, we have tight bounds on the complexity of
equivalence for normal-form terms when the base is positive
relational algebra. For general terms over this base, we get
upper bounds by combining standard λ-calculus normaliza-
tion with results on special cases of Nonrecursive Datalog
containment. In this paper we have not given a complete
picture of the complexity for terms of order 1 and degree 1
– that is, for Nonrecursive Datalog containment. However,
subsequently this problem has been resolved [7].

The open problems are manifold. In particular, we do
not have tight bounds for equivalence of unrestricted terms,
even those that simply transform data to data. Furthermore,
there are two natural bases where we do not have upper
bounds even for containment of normal-form terms of order
2: conjunctive queries, and unions of conjunctive queries
without data constants. Finally, we have not investigated

generalizations of this formalism to arbitrary orders – we
plan to tackle this in future work.

Acknowledgements. We are very grateful to the anony-
mous referees of PODS for helpful comments and correc-
tions. We thank TJ Green for suggestions and references
that improved the camera-ready. Benedikt and Puppis are
supported in part by EPSRC EP/G004021/1 (the Engineer-
ing and Physical Sciences Research Council, UK).

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] A. V. Aho, Y. Sagiv, and J. D. Ullman. Efficient
optimization of a class of relational expressions. ACM
TODS, 4(4), 1979.

[3] S. Amer-Yahia, S. Cho, and D. Srivastava. Tree
Pattern Relaxation. In EDBT, 2002.

[4] J. Avigad. Eliminating Definitions and Skolem
Functions in First-order Logic. ACM TOCL,
4(3):402–415, 2003.

[5] F. Bancilhon. On the completeness of query languages
for relational data bases. In MFCS, 1978.

[6] A. Beckmann. Exact Bounds for Lengths of
Reductions in Typed λ-Calculus. J. Symb. Log.,
66(3):1277–1285, 2001.

[7] M. Benedikt and G. Gottlob. The Impact of Views on
Containment, 2010. Manuscript in preparation.

[8] M. Benedikt and C. Koch. From XQuery to Relational
Logics. ACM TODS, 2009.

[9] P. Buneman and R. Frankel. FQL: a Functional Query
Language. In SIGMOD, 1979.

[10] M. Casanova, R. Fagin, and C. Papadimitriou.
Inclusion Dependencies and Their Interaction with
Functional Dependencies. JCSS, 28(1):29–59, 1984.

[11] B. Cautis, A. Deutsch, and N. Onose. Querying Data
Sources that Export Infinite sets of Views. In ICDT,
2009.

[12] A. Chandra and P. Merlin. Optimal Implementation
of Conjunctive Queries in Relational Data Bases. In
STOC, 1977.

[13] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and Expressive Power of Logic
Programming. ACM Comp. Surv., 33(3):374–425,
2001.

[14] G. H. L. Fletcher, M. Gyssens, J. Paredaens, and
D. V. Gucht. On the expressive power of the relational
algebra on finite sets of relation pairs. IEEE Trans.
Knowl. Data Eng., 21(6):939–942, 2009.

[15] G. Gottlob, N. Leone, and F. Scarcello. Hypertree
Decompositions and Tractable Queries. JCSS,
64(3):579–627, 2002.

[16] G. Gottlob and C. Papadimitriou. On the Complexity
of Single-rule Datalog Queries. Inf. Comput., 183(1),
2003.

[17] G. Hillebrand and P. Kanellakis. Functional Database
Query Languages as Typed Lambda Calculi of Fixed
Order. In PODS, 1994.

[18] G. Hillebrand, P. Kanellakis, and H. Mairson.
Database Query Languages Embedded in the Typed
Lambda Calculus. In LICS, 1993.

[19] D. S. Johnson and A. C. Klug. Testing Containment

of Conjunctive Queries under Functional and Inclusion
Dependencies. JCSS, 28(1), 1984.

[20] C. Koch. On the Complexity of Nonrecursive XQuery
and Functional Query Languages on Complex Values.
ACM TODS, 31(4):1215–1256, 2006.

[21] N. Koudas, C. Li, A. Tung, and R. Vernica. Relaxing
Join and Selection Queries. In VLDB, 2006.

[22] D. Kozen. Lower Bounds for Natural Proof Systems.
In FOCS, 1977.

[23] L. V. S. Lakshmanan, F. Sadri, and I. N.
Subramanian. On the logical foundations of schema
integration and evolution in heterogeneous database
systems. In DOOD, 1993.

[24] A. Levy, A. Rajaraman, and J. Ullman. Answering
Queries using Limited External Query Processors. In
PODS, 1996.

[25] A. Levy and D. Suciu. Deciding Containment for
Queries with Complex Objects. In PODS, 1997.

[26] F. Neven, D. Van Gucht, J. Van den Bussche, and
G. Vossen. Typed query languages for databases
containing queries. In PODS, 1998.

[27] A. Ohori, P. Buneman, and V. Breazu-Tannen.
Database programming in Machiavelli—a polymorphic
language with static type inference. In SIGMOD, 1989.

[28] J. Paredaens. On the expressive power of the relational
algebra. Inf. Process. Lett., 7(2):107–111, 1978.

[29] J. Paredaens and D. Van Gucht. Converting Nested
Algebra Expressions into Flat Algebra Expressions.
ACM TODS, 17(1):65–93, 1992.

[30] K. A. Ross. Relations with relation names as
arguments: algebra and calculus. In PODS, 1992.

[31] K. A. Ross. On negation in HiLog. In J. Log.
Program., 1994.

[32] Y. Sagiv and M. Yannakakis. Equivalences among
relational expressions with the union and difference
operators. J. ACM, 27(4):633–655, 1980.

[33] V. Tannen, P. Buneman, and L. Wong. Naturally
Embedded Query Languages. In ICDT, 1992.

[34] M. Y. Vardi. The Complexity of Relational Query
Languages. In STOC, 1982.

[35] V. Vassalos and Y. Papakonstantinou. Expressive
Capabilities Description Languages and Query
Rewriting Algorithms. The Journal of Logic
Programming, 43(1):75 – 122, 2000.

[36] S. Vorobyov and A. Voronkov. Complexity of
nonrecursive logic programs with complex values.
Technical Report MPI-I-97-2-010, Max-Planck Institut
fiir Informatik, Saarbriicken, November 1997.

[37] L. Wong. Kleisli, a functional query system. J. Funct.
Program., 10(1):19–56, 2000.

[38] M. Yannakakis. Algorithms for acyclic database
schemes. In VLDB, 1981.

